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Abstract 

This paper presents some developed and implemented theory which can be applied to 
optimization of condition-based maintenance decisions within the context of physical 
asset management. We examine a replacement problem for a system subject to 
stochastic deterioration. In particular, the analysis of a preventive replacement policy 
of the control-limit type for a system subject to inspections at discrete points of time 
is presented. Cox’s Proportional Hazards Model with Weibull baseline hazard 
function and time dependent stochastic covariates, reflecting the item’s condition, is 
used to describe the hazard rate of the system. Statistical results are then blended with 
economic or performance considerations to establish long-run optimal maintenance 
strategies.  
The structure of the decision-making software EXAKT™ is presented, and recently 
added optimization and prognostic capabilities are described.   
 
Keywords: condition-based maintenance, proportional-hazards model, Markov 
process, cost and availability optimization, decision software  

1. Introduction 

Condition Monitoring (CM) has become a recognized tool for assessment of 
operational state of industrial equipment. Maintenance decisions, such as when to take 
an action and what type of action to take, can be made based on analysis of CM 
information. Examples of CM information that can be utilized include, but are not 
limited to: Vibration Measurement and Analysis, Infrared Thermography, Oil 
Analysis and Tribology, Ultrasonics, Motor Current Analysis, etc. [1]  
In order to obtain useful interpretation, data collection about the operational condition 
of the item should be followed by proper analysis, capable of extracting meaningful 
and reliable information from it.  
Control charts are one of the most commonly applied techniques for interpretation of 
CM data. At each inspection, levels of some measurements are compared with the 
corresponding predefined “warning limits” and judgment is made based on the 
outcome. The method has been applied for several decades and proved to be a helpful 
and simple to understand technique.  
However, control charts leave several important questions unanswered. Among the 
variety of measurements related to the items condition that one can collect, which 
ones should be paid attention to? What if there is no single variable that can provide 
information on true condition of the equipment? What are the optimal warning limits 
and should these limits change with operating age of the item?  
The other conventional approach to maintenance planning and decision making is the 



age-based strategy. The classical age replacement strategy recommends replacing an 
item either at failure or when it reaches a certain age. Several modifications of the 
classical method have been proposed (See, for example, [2]), and this paper discusses 
the model which extends the age-based model with addition of analysis of CM 
information.  
The idea of taking advantage of both the CM information and the age data for 
modeling useful statistical characteristics of equipment represents the next step of 
evolution of techniques in maintenance. In the literature, such approach to 
optimization of maintenance decisions is referred to as the Condition-Based 
Maintenance (CBM) technique, and advantage is that by taking into account both the 
age of the item and it’s history it significantly expands the space of available 
maintenance strategies.  
The CBM Consortium research laboratory was established in 1995 at the Department 
of Mechanical and Industrial Engineering in the University of Toronto. The lab has 
developed theory that combines age and condition monitoring data with economic 
and/or performance data that may include the cost of failure, the cost of planned 
maintenance, the corresponding down times, and produces a long-run optimal 
maintenance decision policy. Among current activities of the project is development 
of software that can assist maintenance and reliability specialists to optimize decisions 
in CBM environment. The current state of development of the software, called 
EXAKT™, is presented in section 4.  
The rest of this paper is organized as follows. Section 2 introduces the theory that can 
be used for modeling of time to failure of the item. The approach to statistical 
modeling based on the Proportional Hazards Model is described. Methods of 
obtaining the conditional lifetime distribution and some of its useful characteristics 
are presented. Section 3 of this paper contains description of several decision models 
that have been developed by the Condition-Based Maintenance Laboratory to 
optimize maintenance strategies based on criteria of cost or availability. Description 
of optimization software and an implemented approach to generalization of the 
presented theory to systems with multiple failure types is proposed in section 4. 
Finally, section 5 contains the conclusion.  

2. Failure time model 
In this paper we consider a replacement model in which an item is replaced with 
another one “as good as new”, either at failure or at planned replacement. Item 
histories are assumed to be independent and identically distributed random processes. 
A history includes the information on the item’s observed lifetime, censoring 
information and information on diagnostic variables collected at regular discrete times 
during the observation period.  
In this paper diagnostic variables will be termed covariates. In practice, both the 
external variables (operating environment conditions) and internal (diagnostic) 
variables can be used as covariates for the analysis. The external covariates can affect 
the time to failure, and the internal variables can reflect the current state of the item.  
Complete details on the statistical theory presented in this section are found in [3] and 
[4].  

2.1 Statistical model 
Let T  be the time to failure of the item. The time-dependent condition-monitoring 



indicators are modeled by a non-homogeneous discrete Markov process { ( ) 0}Z t t, > , 
where 1 2( ) ( ( ) ( ) ( ))mZ t Z t Z t Z t= , ,...,  is an m -dimensional covariate process observed 
at regular inspections of the item. It is assumed that ( )Z t  is a right continuous 
process, with left-hand limits, and that each covariate ( )iZ t  is a discrete numerical 
variable with finite number of values. Let {0 1 2 }n, , , ...,  be the finite state space of 

( )Z t . Then the overall system can be modeled by the joint process ( ( ) ( ))I T t Z t> ,  
( ( )I ∗  being the indicator function) with transition probabilities  
 ( ) ( ( ) ( ) )ijL x t P T t Z t j T x Z x i, = > , = | > , =  

 
For the analysis it is convenient to represent ( )ijL x t,  in the following form  
 ( ) ( ( ) ) ( ( ) ( ) )ijL x t P T t T x Z t j P Z t j T t Z x i, = > | > , = ⋅ = | > , =  (1) 
 
 
Then for a short interval of time [ ]x x x, + ∆ , values of transition probabilities can be 
approximated as follows:  
 ( ) [1 ( ) ] ( )ij ijL x x x h x i x p x x x, + ∆ = − , ∆ ⋅ , + ∆  (2) 
 
where ( ) ( ( ) ( ) )ijp x t P Z t j T t Z x i, = = | > , =  is the conditional transition probability of 
the covariate process ( )Z t , and ( )h x i,  represents the hazard function. Details on 
modeling of ( )h x i,  will be discussed in section 2 of this paper. Values of 

( )ijp x x x, + ∆  can be approximated from historical data using the maximum likelihood 
method. More details on estimation of transition probabilities can be found in [3].  
For longer intervals transition probabilities can be derived from (2) using the Markov 
property:  
 ( ) ( ( 1) ) ( ( 1) )ij ik kj

k
L x x m x L x x m x L x m x x m x, + ∆ = , + − ∆ ⋅ + − ∆ , + ∆∑  

 

2.2 Proportional hazards model with time-dependent covariates 

In this paper the influence of CM indicators on the failure time is modeled using the 
Proportional Hazards Model (PHM). First proposed by Cox in 1973 [5], the PHM and 
its variants have become one of the most widely used tools in the statistical analysis 
of the lifetime data in biomedical sciences and reliability. For our analysis we 
consider a parametric PHM with baseline Weibull hazard function as a model for the 
hazard function. This model is also known as a Weibull parametric regression model. 
For this model  
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The method of maximum likelihood can be applied for estimation of parameters 
β η γ, ,  of the model. For more details, please refer to [3].  



2.3 Conditional distribution of time to failure 

Within the framework of statistical models introduced in sections 1 and 2, the 
conditional reliability function of the item, given the current state of the covariate 
process can be expressed using (1) as follows:  
 ( ) ( ( ) ) ( )ij

j

R t x i P T t T x Z x i L x t| , = > | > , = = ,∑  (3) 

 
 
Once the conditional reliability function is calculated we can obtain the conditional 
density from its derivative. We can also find the conditional expectation of T t− , 
termed the remaining useful life (RUL), as  
 ( ( )) ( ( ))

t
E T t T t Z t R x t Z t dx

∞
− | > , = | ,∫  

 
In addition, the conditional probability of failure in a short period of time [ ]t t t, + ∆  
can be found as  
 (Survive during [ ] ( )) ( ( )) ( ( ))P t t t t Z t R t t Z t R t t t Z t, + ∆ | , = | , − + ∆ | ,  
 
For a maintenance engineer, predictive information based on current CM data, such as 
RUL and probability of failure in a certain period of time, can be a valuable tool for 
assessment of risks and planning appropriate maintenance actions.  

3. Decision models 

3.1 Economic decision model 
The objective of the economic decision model is to develop a rule for preventive 
replacement that minimizes the average replacement cost per unit time due to 
preventive and failure replacements over a long time horizon. Let pC C=  be the 
preventive replacement cost, and fC C K= +  be the failure replacement cost, per one 
replacement. These costs are assumed fixed for all replacements. Let 

inf{ 0 ( ( )) } 0dT t Kh t Z t d d= ≥ : , ≥ , >  define a “control-limit” policy, i.e. if dT T< , 
perform the preventive replacement at time dT , and if dT T≥ , perform the failure 
replacement at time T . Let the probability of failure replacement be denoted by 

( ) ( )dQ d P T T= ≥ , and the expected time until replacement be denoted by 
( ) (min{ })dW d E T T= , . Then the long-run expected cost of replacements per unit time 
( )dΦ  is  

 
( )( )

( )
C KQ dd

W d
+

Φ =  (4) 

 
 
The value d ∗  that minimizes the right-hand side of expression (4) corresponds to the 
optimal control-limit policy 

d
T T ∗

∗ = . Makis and Jardine in [6] have shown that for a 

non-decreasing hazard function ( ( ))h t Z t, , rule T ∗  is the best possible replacement 
policy (See also [7]). It can be mentioned that for non-monotone hazard function, 



control-limit approach can still be viewed as providing a “near to optimal” 
replacement policy (more discussion can be found in [3]).  
For a non-decreasing hazard function the optimal risk threshold d ∗  that minimizes 

( )dΦ  can be found using the fixed point iteration algorithm [6]. In general case, 
direct numerical search can be applied.  
For the PHM model with Weibull baseline distribution, the optimal replacement rule 

inf{ 0 ( ( )) }
d

T T t Kh t Z t d∗
∗ ∗= = ≥ : , ≥  can be interpreted as  
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where ( )ln d
K

βη
βδ

∗∗ = . The function ( ) ( 1) lng t tδ β∗= − −  can be considered as a 

“warning level” function for the condition of the item reflected by a weighted sum of 
current values of covariates. A plot of function ( )g t  versus working age can be 
viewed as an economical decision chart which shows whether the data suggests that 
the item has to be replaced. An example of a decision chart with several inspections 
points can be found on Figure 1. Detailed case studies based on the model discussed 
in this section can be found in [8], [9].  

 
Figure 1. Sample Economical Decision Chart (for 1β > ) 

3.2 Availability maximization 

In some cases, maintenance engineers are faced with the problem of maximization of 
operating availability, rather than cost. In such cases, the optimal long-run balance 
between downtime due to preventive replacements and downtime associated with 
failures can also be optimized using model (4). For the availability setting, if pt  
represents the downtime required for preventive replacement, and f pt t≥  - failure 
downtime, define the expected long-run availability function ( )dΦ  as follows:  

 
( )( )

( ) (1 ( )) ( )p f

W dd
W d t Q d t Q d

Φ =
+ ⋅ − + ⋅

 (5) 

 
 
The value of d ∗  that maximizes function ( )dΦ  in (5) defines the optimal control-
limit replacement policy 

d
T T ∗

∗ = . In order to demonstrate relation of the availability 
model to the model described in section 1, consider the following reformulation of 
(5):  



 ( ) ( )
( )

1( )
1 p f pt t t Q d

W d

d + − ⋅Φ =
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Clearly, the maximization problem (5) is equivalent to a minimization problem of 
type (4) with parameters pC t=  and f pK t t= − . Methods described in section 1 can 

be used for calculation of the optimal hazard threshold level d ∗  in this model.  

3.3 Balancing availability and cost 
The model proposed in section 1 can also be applied for situations when 
consequences of downtime can be quantified and thus contribute to the overall cost of 
equipment maintenance. In this setting, if we define pa  and fa  to be hourly costs of 
downtime due to preventive and failure replacements respectively, then the model can 
be modified as follows:  

 
( ) (1 ( )) ( ) ( )
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In the models discussed in sections 1 and 2, it can easily be seen that when f pC C≤  
or f pt t≤ , then the optimal strategy will always be to run to failure. For the combined 
model, however, some more complex rule can be derived.  
In the notations introduced above, it can be shown that in order to determine whether 
the Run-to-Failure strategy is optimal, one can check if  

 f f f p p p

f p

C a t C a t
t tµ µ

+ +
≤

+ +
 (7) 

 
where µ  is the expected time to failure under the Run-to-Failure policy. In 
accordance with (7), we have:  

 since ( )
( )

f f f p p p p p p

f p p

C a t C a t C a t
W d

t t W d t
µ

µ µ
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which implies  
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W d t Q d t Q d tµ
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and means that the Run-to-Failure policy is the best, i.e. it provides the least long-run 
average cost ( )Φ ∞ .  
Condition (7) demonstrates that relations between parameters in the combined model, 
as far as analysis of policies is concerned, are more complex than those in previously 
described models. It can be seen, for example, that in some cases high cost of 
replacement at failure can be less important for the optimization process than the cost 
of downtime related to preventive replacement, even if the cost of preventive 
replacement is relatively low.  

4. EXAKT™ - a tool for evidence-based decision making 

Practical application of the theory presented in this paper requires a significant effort 
in collecting, preparing, filtering, analyzing the data, and using the result for 



optimizing maintenance strategies. This creates a need in a software tool that will be 
capable of performing the above named tasks and yet remain simple to understand 
and operate.  
The theory described in this paper has been implemented by the CBM lab at the 
University of Toronto to produce the software with the capabilities required for 
modeling and CM-based decision making.  
The current state of development of the software, named EXAKT™, allows the user 
to:  

• Create a convenient database by extracting the event and condition 
(inspection) data from external databases;  
• Detect logical errors in the databases;  
• Perform data analysis and preprocessing, using graphical and statistical 
analysis;  
• Estimate parameters of the PHM and Markov process model. The 
model can be evaluated based on such statistical tests as Wald test, Log-
likelihood test, Kolmogorov-Smirnov test, 2χ  test for independence of 
covariates and for homogeneity of the Markov process;  
• Calculate and graphically present the conditional probability 
distribution for a given item and provide such characteristics as RUL and 
probability of failure in a short time period;  
• Compute and save the optimal replacement policy. Alternate policies 
are also available based on Age and Block replacement strategies;  
• Perform separate analysis for different failure modes or components of 
the system and create an integrated decision module;  
• Make and save decisions for current records whenever it is required, 
using the developed decision model.  

Figure 2 shows the diagram illustrating the principle of work of the software and the 
way it can be used in decision-making. As outlined above, the program utilizes the 
age data and the condition-monitoring data in order to produce a statistical model, 
which in turn can be used to derive useful justified predictions and/or to optimize 
economic considerations. It is our belief that when supplied with the results of these 
analyses, an engineer can make better maintenance decisions.  

 

Figure 2. Principle of EXAKT™ 
The software also provides procedures for the checking, correction and transformation 
of data. A simplified programming language has been developed and included in 
EXAKT™ to help the user analyze the data using graphical methods and a number of 
statistical operations. An overview of features implemented in EXAKT™ can be 
found in [3] and [10].  



4.1 Marginal Analysis in EXAKT™ 

For a multi-component system, or a system with multiple failure modes, the software 
has an option called Marginal Analysis. Under this option, for a single set of data, 
separate models can be built for different components (or failure modes) and then 
integrated to produce one general decision model.  
Separate analyses of different components (or failure modes) can help for better 
planning and scheduling of preventive maintenance activities, more targeted work 
orders, possibilities for opportunistic preventive maintenance, etc. However, marginal 
analysis requires additional information on lifetime history of equipment, such as 
classification of events of failure, which might not always be accessible.  
One of the case studies undertaken by the CBM lab was intended to analyze 
performance of Diesel Engines employed on ships. As many as ten different failure 
modes have been defined, five of which have been found related to the available 
condition monitoring data (oil analysis data) collected by the user over the years. If 
ignored, interactions between different causes of failure could have led to a 
conclusion that time was not a significant risk factor for the engine. At the same time, 
when separated, analyses of different failure modes showed that at the component 
level it was possible to build time-dependent statistical models and, thus, derive more 
targeted policies for component replacements. In terms of the system, it translated into 
a component replacement strategy which yielded 20%-50% of improvement 
(depending on the ratio of costs of planned and failure replacements) in the long-run 
cost per unit time as compared with the Run-to-Failure strategy.  
Challenge remains to develop theory revealing relations between different 
components (or failure modes) within a system. This problem, among others, is one of 
the current research interests of the CBM lab. An approach to analysis and modeling 
of complex systems as well as review of literature can be found for example in [11].  

5. Conclusion 

The growing competitiveness in the industrial world is driving the interest in 
improvement of asset effectiveness. Application of condition monitoring techniques is 
growing and produces a challenge for researchers to develop appropriate decision 
making strategies. Statistical modeling of acquired data and economic considerations 
of maintenance activities have proven to be useful for making evidence-based 
decisions and building justified predictions for the future behavior of the equipment. 
Development of theoretical optimization models should be followed by the 
development of software for analysis of condition-monitoring and equipment lifetime 
data in order to ensure successful implementation of new techniques in the industry.  
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