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ABSTRACT  
 

A Condition Based Maintenance (CBM) policy is a procedure used by 
maintenance personnel to interpret a set of measured machine condition 
indicators and decide whether or not to renew a physical asset at the current 
moment.  

 
Traditionally CBM data interpretive policies have been obvious. For example, 

for process machinery, if a temperature, pressure, or vibration reading exceeds 
a pre-defined limit, maintenance should be carried out before functional failure. 
However our ability to collect large amounts of condition data has continually 
outpaced our ability to define policies for its interpretation. The condition 
indicators may sometimes contradict one another. Upward or downward trends 
are frequently obscured by randomness in the data. In many instances no clear 
set of limits or rules have been developed to indicate whether or not a failure 
process is underway and how much time is available before the physical asset is 
no longer able to perform one of its functions.  

 
The EXAKT CBM optimizing methodology was applied to a set of 

experimental condition data on gearboxes in order to develop an optimal 
interpretation policy. An optimal policy is a procedure for data interpretation, 
which, if applied consistently in a CBM program, minimizes the cost of 
maintenance of a physical asset.  
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1.  INTRODUCTION 
 
Condition data from eleven gearboxes run to failure on the mechanical 
diagnostic test bed (MDTB) at Penn State University Applied Research 
Laboratory (ARL) was analyzed using the proportional hazards modeling 
(PHM) technique embedded in the EXAKT CBM optimizing program (see [1, 
3, 4]).  Several statistical and replacement decision models were built based 
upon the observed condition data and ensuing failure events.  
 

The MDTB makes a large number of condition indicators available for 
analysis, for example, the conventional vibration features such as acceleration 
amplitudes at various gear and bearing frequencies. In particular the Fault 
Growth Parameter (FGP) was calculated from the residual error signal obtained 
by a signal processing algorithm (see Miller) developed at ARL. We call it, 
henceforward, the ARL algorithm. In this algorithm, a family of Wavelets is 
constructed to decompose the gear motion error signal and to extract the 
residual error signal for gear fault detection. In addition, we proposed a 
modified version of FGP, called FGP1, by weighting each point in the residual 
error signal spectrum proportional to its deviation from a reference baseline. 
Besides FGP and FGP1, other useful indicators were extracted from the 
residual error signal. It was found that the revised version of FGP (FGP1) is 
superior to the FGP and other condition indicators for building the EXAKT 
model and making the replacement decision.  

 
The eleven test runs were designated Test Run Numbers: 05, 06, 07, 08, 09, 

10, 11, 12, 13, 14, and 15. All gearboxes were run in at 540 in-lbs torque for the 
first 96 hours of each test. Following the initial run-in period, the output torque 
was increased as follows: 

 
Test Runs 05, 06, 12, and 13: by 300% from 540 to 1620 in-lbs 
Test Runs 07, 08, 09, 10, and 11: by 200% from 540 to 1080 in-lbs  
Test Runs 14 and 15: the load was alternated between 100% (540 in-lbs) and 

300% (1620 in-lbs) at 30-minute intervals.  
 
Vibration acceleration readings were taken at 8-hour intervals during the 96-

hour run-in period and at 30-minute intervals during the high load 'operational' 
phase.  Readings were of 10 seconds duration and sampled at a rate of 20 kHz. 
Accelerometers were located at various positions on the gearbox casing.  

 
Test Runs 11, 13, and 15 ended in shaft failure. All other test runs ended with 

gear tooth failure. All gearboxes in the eleven tests consist of a gear and a 
pinion with gear ratio 1:1.533 for Test Runs 05 to 11 and 1:3.333 for Test Runs 
12, 13, 14 and 15. We divide the test runs into two groups such that the 
gearboxes have the same gear geometry in the group. Group A is composed of 
Test Runs 5-11 and Group B consists of Test Runs 12-15. We found that the 
data from these two groups of physically different gearboxes have to be 
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analyzed separately. “Gear tooth fracture” was the failure mode examined in 
this study. The three test runs where no gear tooth failure was observed were 
classified as suspensions. Only the gear in a gearbox was studied in this paper 
since there was no failure information about the pinion (pinion tooth fracture) 
in all eleven tests. 

 
In this paper, we analyze the data set described above and apply the EXAKT 

CBM optimizing methodology to develop optimal maintenance policies for the 
gearboxes. The paper is organized as follows. In Section 2, a signal processing 
technique is used to extract useful information from the raw vibration signals. 
Based on the extracted information, we obtain the event and inspection data that 
are essential to applying EXAKT. Data cleaning and pre-processing are also 
included in this section. In Section 3, EXAKT software is used to analyze the 
data, build a PHM for the gearbox and develop an optimal maintenance policy. 
Finally in Section 4, the results are summarized and some concluding remarks 
are given. 
 

2.  DATA PRE-PROCESSING AND ANALYSIS 
 
The original data provided by the ARL of Penn State University on a series of 
test runs of single reduction helical gearboxes contains vibration signatures 
captured by accelerometers mounted at different positions on the gearbox 
casing. As suggested by Miller [5], accelerometer A03, which is mounted in the 
axial direction, should be sensitive to the detection of helical gear tooth faults. 
Accordingly, data obtained from accelerometer A03 were used in our analysis. 
Since it is impossible to use directly the raw vibration data for CBM analysis, a 
signal processing and data pre-processing step is required in order to extract 
features that we may analyze. 
 
2.1. VIBRATION SIGNAL PROCESSING 
 
In each test, data were collected until the MDTB was shutdown as a result of 
two accelerometers exceeding a predetermined limit of 150% of RMS.  The 
targeted failure mode, tooth failure, however, may occur at any time prior to 
shutdown. To detect the moment when a potential tooth failure occurs, a signal 
processing technique is required.  
 

In the literature, there are many signal processing tools for vibration data, 
such as power spectrum, time domain averaging, denoising, demodulation, time 
series, time-frequency distribution, wavelet, neural network, high order 
statistics, etc. In this paper, we are interested in using demodulation of a 
vibration signal. Wang and McFadden [8] proposed decomposition of motion 
error signal for gear fault diagnosis based on time domain average. But as 
mentioned by Miller [5], time domain averaging has some drawbacks such as 
the requirements of long signal length, precise shaft rate, synchronous signal, 
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and a different signal for each gear. To get around these drawbacks, Miller [5] 
proposed to use wavelets for the decomposition of a vibration signal. 

 
Wavelet is a powerful mathematical tool with wide applications [10]. Wavelet 

transformation has been applied in rotating machinery diagnostics (see, e.g., [2, 
9, 11]).  Miller’s approach [5, 6, 7], however, is different in that a series of 
wavelets are used as a comb filter to decompose the motion error signal rather 
than transforming the signal. In this paper, we used Miller’s approach, or the 
ARL algorithm, for the signal processing of the vibration data. The idea is 
briefly described as follows.  

 
The gear motion error signal defined in [8] was used for the diagnostics of 

gear fault. It is a real signal described by an infinite cosine series with 
fundamental period , which is the input shaft rate. Let N be the number of 
teeth for the pinion and M be the number of teeth for the gear. The composite 
gear motion error  can be written as a summation of three components:  
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A series of Morlet wavelets having the form 

))(2exp()( 2
0 ttfjt πσπσπψ −= , 

where σ  is the scale parameter and  is the frequency parameter, were used 
as a comb filter to decompose the original signal to obtain the gear motion error 
signal, and the residual error signals for the gear and the pinion.  

0f

 
Based on the plot of the residual error signal, one can make a gear fault 

diagnosis. Typical plots of residual error signals are reproduced in Figure 1 
from Miller [5] for illustration. In addition, a fault growth parameter (FGP) 
based on the residual error signal was proposed to track the gear tooth health 
condition over time. The FGP is defined as the part (percentage of points) of the 
residual error signal which exceeds three standard deviations from the baseline 
residual taken when the run began.  
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Figure 1: Residual error signals for a good gear at timestamp 200 (left)  
and for a gear with a broken tooth at timestamp 208 (right) in Test Run 12 

 
 

The goal of signal processing in CBM is to filter out of the signal, as much 
operational and environmental data as possible, so that the magnitude of the 
remaining signal reflects the “ground truth” state of deterioration for the 
targeted failure mode. We modified the definition of FGP by assigning weights 
to the residual error signal points which exceed three standard deviations from 
the baseline residual. The weights were computed as proportional to the 
magnitude of their deviations. The modified version of FGP is called FGP1 in 
this paper. The signal processing technique described above enables us to 
prepare a table of inspection data related to the degradation process of the 
failure mode “tooth fractured” and a table of “event” data (installations, failures, 
suspensions, adjustments, etc). These tables are essential for applying the 
EXAKT procedure to create statistical models supporting predictive 
maintenance decision making. 
 
2.2. EVENT DATA 
 
To prepare the event data for applying the EXAKT CBM optimization 
technique, we are required to know when the gear was installed and when the 
gear tooth failure occurred. Also, other events, that would influence the 
measured variables or the failure mechanism, such as maintenance adjustments, 
operational changes, etc, should be included in the data. In this study, changes 
in torque loading as described in the introduction, were accounted for in the 
analysis process.  The ARL algorithm was used as a method to detect the 
moment of tooth fracture providing the failure “event” data required for 
analysis. The event data for the gearboxes are presented in Table 1. 
 

TABLE 1 

Events table for all eleven histories 
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Ident Date WorkingAge Event 

5 6/19/97 1:35:00 PM 0 B 

5 6/24/97 4:16:00 PM 4297 EF 

6 7/17/97 3:15:00 PM 0 B 

6 7/21/97 6:31:00 PM 2389 EF 

7 7/26/97 6:50:00 PM 0 B 

7 7/31/97 11:31:00 PM 3471 EF 

8 8/16/97 4:45:00 PM 0 B 

8 8/21/97 1:27:00 AM 2563 EF 

9 9/10/97 10:45:00 PM 0 B 

9 9/20/97 3:01:00 AM 8057 EF 

10 11/17/97 4:20:00 PM 0 B 

10 11/23/97 7:31:00 PM 3904 EF 

11 1/22/98 4:02:00 PM 0 B 

11 1/30/98 1:06:00 AM 5748 ES 

12 2/19/98 9:00:00 PM 0 B 

12 2/24/98 5:01:00 AM 2775 EF 

13 3/05/98 8:30:00 PM 0 B 

13 3/10/98 12:01:00 PM 3280 ES 

14 3/15/98 6:32:00 PM 0 B 

14 3/20/98 8:13:00 AM 3007 EF 

15 7/27/98 2:04:00 PM 0 B 

15 8/01/98 7:48:00 PM 4010 ES 
 

In the events table “Ident” refers to Test Run number. “Event” refers to events: 
“B” , that designates the installation of the gearbox, “EF”, that designates the 
tooth failure event and “ES”, that designates the end of the test due to shaft 
failure (considered as a suspension with respect to the “gear tooth fractured” 
failure mode). “Date” is the calendar date and time when the event occurred. 
“WorkingAge” refers to the working age as a measure of service usage. Since, 
in each test, the gearbox operated under varying loads with torques ranging 
from 540 in-lbs up to 1620 in-lbs, it would be inappropriate to use simple 
calendar “running time” as a service usage measure, which would ignore the 
different working conditions under which the gearbox operates. As a reasonable 
approach we used the integral of the product of actual running time and 
instantaneous torque as the working age reflecting the accumulated stress on the 
gear teeth. The unit for working age, as defined, is in-lb-day.                      
 
2.3. INSPECTION DATA 
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The signal processing technique is used to compile the table of inspection data 
related to the degradation associated with the targeted failure mode. Some tests 
ran for a period of time after failure occurred. Only inspections prior to detected 
tooth failure are included in the inspections table. For purposes of comparison, 
some ‘conventional’ vibration features were also included in the inspections 
table (not shown in Table 2). For example, the maximum amplitude of 
acceleration in a narrow frequency band around the gear mesh frequency and 
the sidebands were tested as potential covariates in a proportional hazards 
model. The proportional hazards modeling analysis revealed, however, these 
are not significant indicators of gear tooth failure.  
 

Inspection data are summarized as shown in Table 2, which is a partial view 
of the entire Inspections table. “Ident”, “Date”, and “WorkingAge” have the 
same meaning as in the Events table. The other variables given in the 
Inspections table are extracted from the residual error signal, which are 
described as follows: 

 
FGP - fault growth parameter,  
FGP1 - revised FGP,  
RFM - mean of the power spectrum of the residual error signal, 
RFS - standard deviation of the power spectrum of the residual error signal, 
RTM - mean of the residual error signal, and 
RTS - standard deviation of the residual error signal. 
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TABLE 2 

Inspections table 

Ident Date WorkingAge FGP FGP1 RFM RFS RTM RTS 

5 6/19/97 2:00:01 PM 9.422793403 0 0 2.214 28.1485 0.083873 0.044863

5 6/19/97 10:00:01 PM 190.532660070984 0.66288 0.66288 1.9092 24.0698 0.071178 0.040783

5 6/20/97 6:00:00 AM 371.760867206249 0.47348 0.47348 1.6615 21.1355 0.068625 0.039672

5 6/20/97 2:00:00 PM 552.9594005409 0.37879 0.37879 1.9976 22.0851 0.071577 0.040055

5 6/20/97 10:00:00 PM 734.310333871595 0.94697 0.94697 1.6719 21.8022 0.077595 0.042951

5 6/21/97 6:00:01 AM 915.723966073461 0.47348 0.47348 1.9453 22.8788 0.07907 0.040879

5 6/21/97 2:00:00 PM 1097.21426410803 0.47348 0.47348 1.8623 24.118 0.091515 0.044289

5 6/21/97 10:00:01 PM 1278.74590040316 0.094697 0.094697 1.8029 21.2486 0.073868 0.037136

5 6/22/97 6:00:01 AM 1460.33453373781 0 0 1.7462 22.6369 0.072755 0.037574

5 6/22/97 2:00:00 PM 1641.98645949345 0.56818 0.56818 1.9661 25.6433 0.09066 0.043821

5 6/22/97 10:00:00 PM 1823.72942615747 0 0 1.9658 23.8469 0.081273 0.03821

5 6/23/97 6:00:00 AM 2005.39052615879 0 0 1.9189 24.0627 0.085294 0.043767

5 6/23/97 2:00:00 PM 2540.23665949602 3.5985 3.5985 2.9623 33.9679 0.12064 0.065243

5 6/23/97 2:30:01 PM 2573.7012364347 7.4811 7.4811 3.3846 35.8643 0.14462 0.081629

5 6/23/97 3:00:00 PM 2607.11836312754 4.072 4.072 2.4435 31.427 0.11078 0.062766

5 6/23/97 3:30:00 PM 2640.53895063143 2.0833 2.0833 2.8801 31.7443 0.0965 0.051916

5 6/23/97 4:00:00 PM 2673.96091104032 6.25 6.25 3.1761 31.0083 0.13418 0.075985

5 6/23/97 4:30:00 PM 2707.37974229421 3.4091 3.4091 2.986 34.0286 0.11848 0.063038

5 6/23/97 5:00:01 PM 2740.81539067039 5.0189 5.1088 3.0699 33.8125 0.13142 0.074357

5 6/23/97 5:30:01 PM 2774.23370109095 2.3674 2.552 3.1619 34.6763 0.11484 0.062556

5 6/23/97 6:00:00 PM 2807.63321465763 6.8182 7.0822 3.3282 36.9377 0.14324 0.083121

5 6/23/97 6:30:00 PM 2841.05906257819 3.5985 3.5985 2.8078 30.6903 0.12571 0.065146

5 6/23/97 7:00:00 PM 2874.47717715374 2.7462 2.7462 3.1056 35.9933 0.1229 0.063949

5 6/23/97 7:30:00 PM 2907.90208340763 4.6402 4.6402 3.1828 38.1417 0.14215 0.075681
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In the data set, there are several outliers that were reported by the ARL 

investigators as invalid data. Two significant outliers, one in Test Run 10 and 
the other in Test Run 14, were corrected by interpolating between the preceding 
and next values. The last three inspections in Test Run 11 have very high values. 
These abnormal readings may have been caused by contamination from other 
vibration sources as a result of the shaft failing. These three inspections were 
removed from the table prior to analysis. 
 
2.4. DATA PRE-PROCESSING 
 
Before proceeding to the EXAKT modeling step, further investigation on the 
extracted features (called “covariates” in the analysis) was performed. First, 
FGP and FGP1 were compared over the test runs. FGP and FGP1 for a test run 
are plotted versus their timestamps on the same graph, as presented in Figure 2 
and Figure 3. 
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Figure 2:FGP and FGP1 vs Timestamp (Test Runs 5―11) 
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Figure 3: FGP and FGP1 vs Timestamp (Test Runs 12―15) 

 
 

From the graphs, we observe that FGP and FGP1 are almost identical for Test 
Runs 11, 13, 15, which ended as suspensions; and that FGP1 has larger values 
than FGP when the timestamp is close to the end of the test for all the test runs 
(Test Runs 5, 6, 7, 9, 12, 14) that ended in gear tooth failure. This is not very 
clear for Test Run 9. The relatively low values of FGP and FGP1 (and brief 
warning period) prior to failure in Test Run 9 might be explained by high 
variation in the reference baseline of the residual error signal. Using FGP alone, 
it is difficult, or even impossible to distinguish between a “failed” history and a 
“suspended” history, (e.g., Test Run 14 and Test Run 15). Hence, we may 
expect that FGP1 is a better gear tooth failure indicator than FGP. It will be 
shown in the modeling phase that FGP1 is indeed a better indicator. 

 
Next, correlation among the covariates was investigated for three cases: for 

data from Group A, for data from Group B and for the entire data set (Group A 
+ Group B). Correlation analysis of the covariates is often useful to help in 
covariate selection in building a statistical (proportional-hazards) model. For 
each of the three cases, similar results were found, that is: FGP and FGP1 are 
highly correlated having a correlation coefficient of over 90%. Among the 
covariates RFM, RFS, RTM and RTS the correlation coefficients are over 90%. 
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However, the correlation between any two covariates, one from the grouping of 
covariates FGP and FGP1, and the other from the grouping of covariates RFM, 
RFS, RTM and RPS, was relatively low (correlation coefficient less than 50%). 
Then it may be expected that one representative from each grouping of 
covariates might be appropriate for inclusion as a covariate in the proportional 
hazards model. 
 

3.  MODELING AND MODEL ANALYSIS 
 
Having prepared and validated the data as described, the next step is to build a 
proportional hazards model (PHM). The EXAKT software provides tools for 
selecting the covariates and building and analyzing the Weibull PHM (PHM 
with a Weibull baseline hazard). 
 

The technique of PHM determines how the risk of failure, or hazard, depends 
on covariates. The influence of a covariate on the risk is expressed by the 
covariate parameters - covariate weights - which are the main outcome of the 
PHM analysis.  The mathematical formula for the hazard at time t is: 

( ),)()(exp)( 11

1

tZtZtth ppγγ
ηη

β
β
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=

−
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where t refers to working age, η  is the scale parameter, β  is the shape 
parameter,  are the covariate values at time t, and )(,),(1 tZtZ pL pγγ ,,1 L  are 
the covariate parameters. The shape parameter reflects whether the hazard 
increases with the asset’s working age ( 1>β ), decreases with the asset’s 
working age ( 1<β ), or is independent of the asset’s working age ( 1=β ). 
 

The PHM is operating context specific. That is, if the physical asset’s 
operating context or mechanical configuration changes, then a different failure 
risk model (different covariate weightings) may apply. In the following 
subsection, we investigate whether the PHM depends on gearbox geometry. If 
so, we would be inclined to build two separate PHMs, for each Group A and for 
Group B, rather than building a single PHM for both groups.  
 
3.1. THE EFFECT OF GEARBOX GEOMETRY ON THE PHM 
 
The physical configuration of the gearbox was changed in Test Runs 10-15. It 
is interesting to determine whether the PHM is unique to each gearbox 
geometry. An artificial covariate (a dummy variable) was created to denote the 
gearbox geometry. The value of the dummy variable is 0 if the test run is in 
Group A or 1 otherwise. The dummy variable and all other covariates were 
included in the initial PHM. Then the insignificant covariates were removed 
from the PHM, one at a time (as determined by their p-value), until only the 
significant covariates remained in the model. The dummy variable appeared to 
be a significant covariate, which tells us that the risk model is affected by 
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different gear geometries. This means that we may build separate PHMs for 
Group A and Group B.  
 
3.2. ANALYSIS OF GROUP A 
 
Based on the correlation analysis discussed in Subsection 2.4, we may select 
either one covariate from the grouping of FGP, FGP1 or one covariate from the 
grouping of RFM, RFS, RTM, RTS, or one from each grouping (that is, two 
covariates in combination) to build a PHM. Since FGP1 outperforms FGP, we 
may only select FGP1 from the first grouping to build a PHM. PHMs for all 
three cases were examined. Other combinations were also attempted but they 
did not yield better results than the aforementioned three cases. 
 

In the analyses of Group A gearboxes, six different PHMs were investigated. 
The results for the six models with significant covariates are presented in Table 
3. Also the model with both covariates FGP and FGP1 was analyzed and, as 
anticipated, FGP appeared not to be significant in that combination, although it 
is significant on its own. This means, simply, that FGP1 provides a greater 
amount of useful information than FGP. 

 

TABLE 3 

PHMs built for Group A 

Model  Hazard Function 

FGP1  ( )1FGP388431.0exp
1031910319

51844.5)(
51844.4

⋅





=

tth  

FGP1, RFM  ( )RFM34302.51FGP17955.1exp
79213.2

1)( ⋅−⋅=th  

RFM  ( )RFM64606.2exp
6.561606.56160

49062.4)(
49062.3

⋅





=

tth  

RFS  ( )RFS113776.0exp
1841840

1)( ⋅=th  

RTM  ( )RTM8414.22exp
199259

1)( ⋅=th  

RTS  ( )RTS3561.69exp
6.149296.14929

32064.9)(
32064.8

⋅





=

tth  

 
 

The optimal decision policy is defined as one that minimizes the average cost 
per unit working age of replacements (preventive and reactive maintenance) 
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(see [1]). The optimal policy was calculated for each of the six PHMs. We used 
an estimate of the costs of failure replacement and preventive replacement of 
$5000 and $1000 respectively. Alternatively, if maximum asset availability 
were the required optimization objective, one might apply a mean time to return 
to service (MTTR) of 1 week to 5 weeks respectively. A cost analysis of 
decision policies for the six models is presented in Table 4. The "Expected cost 
per in-lb-day" is the theoretical average cost per unit working age 
corresponding to the optimal policy. The "Average cost per in-lb-day applying 
the EXAKT decision policy" is the actual average cost that would have 
been obtained had the optimal decision policy been in force during gearbox 
operation. 
 

TABLE 4 

Optimal average maintenance costs for Group A 

Model Expected cost per 
in-lb-day 

Average cost per in-lb-day applying the 
EXAKT decision policy 

FGP1 $0.345661 $0.231 

FGP1, RFM $0.424178 $0.233 

RFM $0.346349 $0.408 

RFS $0.247331 $0.449 

RTM $0.562247 $0.494 

RTS $0.405053 $0.402 

 
 
 

From Table 4, we see that the decision policy based on model “RFS” yields 
the lowest expected cost. The decision policy based on model FGP1 yields the 
second lowest expected cost. The question is, which model should we choose as 
the optimal CBM data interpretation policy. In principle, the best policy may be 
determined by applying all these models in practice, and then selecting one 
which gives the best results on average. This method, however, is not practical. 
There is a “cost comparison” function in EXAKT software that may be used to 
conveniently investigate the relative merits of alternative policies. The cost 
comparison in EXAKT generates the average cost per unit working age 
calculated when the policy is applied retroactively to the data used in the 
analysis. The results of the cost comparison are summarized also in Table 4. 
The Cost Comparison function may be considered as a final check of the 
statistical and decision model by reporting whether the decision model is useful, 
i.e., whether it improves current practice.  
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From the cost comparison it was found that models FGP1 and FGP1+RFM 
have close average cost (with average costs $0.231 and $0.233 respectively) 
and they are better than the other models. This could have been expected given 
the calculation methods and physical meanings of the variables. The difference 
between the theoretical and retroactively calculated costs (columns 2 and 3 of 
Table 4) may be explained by the small sample size that may affect the 
accuracies of parameter estimates and the average cost. We may, nonetheless, 
consider models FGP1 and FGP1+RFM as good models, useful for the 
interpretation of the gearbox vibration data. In the model FGP1+RFM, the 
working age appeared non-significant ( 1=β ). We may prefer to use FGP1 as 
the final model because it is simpler, having only one variable. 

 
Model FGP1 was applied to all seven histories from Group A. The decision 
graphs for these tests are presented in Figure 4. If the point corresponding to the 
measurement (calculated as a composite covariate, that is a linear combination 
of covariates as obtained in the PH model) lies in the lower region of the graph, 
no maintenance action is recommended. In this case the expected remaining 
useful life (RUL), which is defined as the expected time to replacement due to 
either failure or preventive maintenance, is reported in the text box on the 
upper-right corner of the decision graph. If the point lies in the upper region, 
the policy recommends immediate renewal (or any appropriate action that 
would restore the gearbox to “as good as new” condition).  
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Figure 4: Decision graphs for Test Runs 5-11 
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From Figure 4, we observe that the application of model FGP1 would have 
resulted in a recommendation to renew the gearboxes (which actually failed) 
prior to their failure. Furthermore, we observe that no recommendation would 
have been made to unnecessarily remove the unfailed gearboxes. This shows 
that the policy appears to be realistic and good one, at least when applied to this 
data. Someone may argue that the policy was both estimated from, and applied 
to, the same data. Obviously, it is not the best method to check the policy. But it 
is the only one available to us with such a small sample size. If new data are 
available, one can apply the policy to the new data to validate the policy. Or if 
the sample size is much larger, part of the data may be used for the estimation 
of the model, and the other part for the validation of the model. 
 
3.3. ANALYSIS OF GROUP B 
 
Similar to the analysis of Group A, we analyzed Group B and obtained 5 
tentative PHMs for Test Runs 12-15, as presented in Table 5. We may observe 
that in all models the working age is not significant ( 1=β ). The optimal 
expected costs per unit working age and the results of the cost comparison for 
all models are summarized in Table 6. 
 

TABLE 5 

PHMs built for Group B 

Model  Hazard Function 

FGP1  ( )1FGP819564.0exp
13078400

1)( ⋅=th  

RFM  ( )RFM23274.3exp
5286380000

1)( ⋅=th  

RFS  ( )RFS229462.0exp
62148900

1)( ⋅=th  

RTM  ( )RTM5958.85exp
271342000

1)( ⋅=th  

RTS  ( )RTS2463.48exp
927285

1)( ⋅=th  

 
 

TABLE 6 

Optimal average maintenance costs for Group B 
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Model  Expected cost per 
in-lb-day 

Average cost per in-lb-day applying the 
EXAKT decision policy 

FGP1  $0.181969 $0.311 

RFM  $0.422995 $0.315 

RFS  $0.448288 $0.700 

RTM  $1.17534 $1.104 

RTS  $0.274129 $0.306 
 
 

From Table 6, we see that model FGP1 has the lowest expected cost per in-lb-
day. The model with the second lowest expected cost is RTS. The cost 
comparison, however, shows that model RTS and FGP1 are close in average 
cost per in-lb-day when the EXAKT decision policy was applied retroactively 
(with average costs $0.306 and $0.311). Summarizing, we conclude that model 
FGP1 may be deployed as the final model. The decision policy based on model 
FGP1 is applied to Test Runs 12-15 and the decision graphs are presented in 
Figure 5. The values of FGP1 in Test Run 15 fluctuate in the later part of the 
test much more than in the other tests, in response to the ramping up and down 
of load in the test. To remove the fluctuation of FGP1 and to improve the model, 
we may smooth FGP1 by using some smoothing procedure such as moving 
average. EXAKT provides a few smoothing functions. The model was rebuilt 
based on the smoothed version of FGP1 and the corresponding decision graphs 
are presented in Figure 6. From Figure 6, we observe again that the application 
of the model would have resulted in a recommendation to renew the gearboxes 
(which actually failed) prior to their failures, and in no recommendation to 
unnecessarily remove the unfailed gearboxes. The same comment given at the 
end of the analysis of Group A applies here. 
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Figure 5: Decision graphs for Test Runs 12-15 

 
 

 

Figure 6: Decision graphs for Test Runs 12-15 using smoothed FGP1 
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4.  CONCLUSION 
 
Both the fault growth parameter (FGP) and its revised version (FGP1) provide a 
clear way to track the development of cracks (or spalls) in gear teeth. However, 
the point at which a replacement action should be taken to respect some sort of 
availability or cost criterion is not obvious. Using FGP or FGP1 in an 
optimization decision model results in setting a policy limit which responds to 
some stated economic objective for that physical asset. The objective may be, 
for example, to minimize the total cost of failure and maintenance, to maximize 
physical asset availability, to attain a certain level of reliability, or to achieve a 
particular performance measure such as a target ratio of planned to breakdown 
maintenance. It has been shown that FGP1 is superior to FGP in fault detection 
and decision modeling.  Maintenance managers can use the methods described 
here as a practical way to improve the return on investment in their existing 
CBM programs. The sample size of the data (number of histories, not number 
of inspections) analyzed in this paper is relatively low. Although larger sample 
size would provide greater confidence, the MDTB test data was found to be 
adequate for demonstrating the usefulness of PHM and decision policy 
methodology described in this paper for predicting and preventing gearbox 
failures. 
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